

Failure Injection and Recovery

Rajesh Dharia

Email:rdharia@eos.hitc.com

21 February 1996

Agenda

- Objectives
- Model Capabilities
- Methodology
- Experimental Design
- Results/Analysis
- Future Studies
- Conclusion

Objectives

To Assess the System Performance impact under reduced Resource availability

Processing Subsystem CPU Failure

Job Turnaround

Objectives (Continue)

Assist in System Sizing/Capacity Planning

- To meet the response time/throughput Requirement
- To perform "What If" Analysis under failure/recovery mode

Model Capabilities

What's Currently Implemented in ECS Dynamic Model Single/Multiple Hardware Failure injection/Recovery Processing Subsystem

CPU Failure/Recovery

Data Server Subsystem

Robotic

Methodology

A Generic Parameter Driven Model Design to perform failure/recovery Analysis

Parameters needed for CPU failure:

- Failure Injection time
- DAAC ID, String ID and Number of (CPU) resources to be failed

Parameters needed for Data Server component failure:

- Failure Injection time
- DAAC ID, String ID, Number of (Robots and/or R/W Heads) Resources to be failed

731-PP-002-001

FAIL-6

Methodology (continue)

A Generic Parameter Driven Model Design to perform failure/recovery Analysis

Parameters needed for CPU recovery:

- Recovery time
- DAAC ID, String ID and Number of (CPU) resources to be recovered

Parameters needed for Data Server component recovery:

- Recovery time
- DAAC ID, String ID, Number of (Robots and/or R/W Heads) Resources to be recovered.

731-PP-002-001

FAIL-7

Experimental Design

Model Scenarios

Two Runs with identical workload

- (1) Normal Run
- LaRC for CERES-TRMM workload with two shift (16 Hrs) operation (8:00 A.M. to 12 Midnight) for product generation, with 24 SGI/PC
- Simulation started on day 27
- Simulation duration for 17 days (27+17=44)
- (2) Failure/Recovery Run
- Same conditions as above except CPU failure injected on day 33 at 8:00 A.M. (all CPUs down for 8 hours) and Recovery process started at 4:00 P.M.

Results/Analysis

Side by Side comparison of these two runs

- CPU allocation Timeline, Jobs Queue timeline, Processing Disk allocation Timeline
- Expected Vs Achieved Process frequency
- Products Processing Time (mean, min., Max)
- Production Process History (Start/Finish time)
- Data Server Disk Allocation Timeline
- Data Server R/W Heads allocation Timeline, R/W heads Requests queuing
- Data Server Robotic allocation Timeline, Requests queuing at Robotics

Future Studies

The current analysis indicates the following studies may be interesting and worthwhile.

- AM1 Instruments Failure/Recovery Analysis (MODIS, ASTER, CERES AM and MISR) in terms of
 - (1) CPU failure at Processing subsystem
 - (2) Robotic failure at Data Server subsystem
 - (3) R/W Heads failure at Data Server subsystem
 - (4) Ingest subsystem (Robotic and/or Read/write heads failure/recovery for AM1 instruments

Conclusion

Failure/Recovery analysis currently limited to Processing Subsystem and Data Server Subsystem

ECS Dynamic Model (BONeS) design may be enhanced if require to support

Ingest subsystem failure/recovery analysis